Physical conditions in high-redshift damped Lyman-alpha absorbers

Katherine Rawlins¹, Gargi Shaw², Raghunathan Srianand³

¹ St. Xavier's College, Mumbai, India (PhD candidate at University of Mumbai)
² Tata Institute of Fundamental Research, Mumbai, India
³ Inter-University Centre for Astronomy and Astrophysics, Pune, India

Damped Lyman-alpha absorbers (DLAs)

- Intergalactic reservoirs of neutral hydrogen (H I)
- Relevant to galaxy formation and evolution
- Probed through rest-frame ultraviolet absorption features in the spectrum of a background quasar
- H₂ detected in about 10-15% high-redshift DLAs
- Cool gas likely associated with star formation

Label	Probed quasar sightline	DLA redshift	Molecules detected
DLA 1	LBQS 1232+0815	2.34	H ₂ , HD
DLA 2	FBQS J0812+3208	2.63	H ₂ , HD
DLA 3	SDSS J1439+1117	2.42	H ₂ , HD, CO
DLA 4	QSO J2340-0053	2.05	7 (of 14) components with H ₂ ; HD

Simulating DLA environments

- Plane-parallel geometry of a photodissociation region¹, with constant pressure across the cloud
- Microphysical calculations using the spectral synthesis code CLOUDY²
- Gas-phase species, with silicate and graphite dust
- Observed H_2 rotational levels (v, J) and neutral carbon fine structure levels (C I*, C I**, C I***) act as constraints

Royal Astronomical Society Early Career Poster Exhibition, 14-28 September 2020

Result 1 – Smaller or porous dust grains

Result 2 – Nature of radiation field

X-ray dominated regions (XDRs)

- Metagalactic background radiation from quasars and galaxies incident on all DLAs
- Additional ultraviolet photons from local star formation required in the DLA 2 model
- Power-law X-ray radiation⁵ used in case of DLAs 1 and 3 suggests that they are high-redshift XDRs
- Possible sign of the role of hydrodynamical heating

Spectral energy distribution of the background models; Enhanced X-rays for the DLA 1 XDR

Metagalactic background

- DLA 4 irradiated only by the background photons
- Column densities depend on the background model incorporated in the calculations too
- The Haardt-Madau background⁶ over predicts H I and under predicts the C I fine structure levels, as compared to the Khaire-Srianand background⁷
- Need improved understanding of the background

Result 3 – Insight into physical properties and processes

Rawlins, Srianand, Shaw, et al., 2018, MNRAS, 481, 2083 <--- PUBLICATIONS ---> Shaw, Rawlins & Srianand, 2016, MNRAS, 459, 3234